
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

SIMULATION-BASED PLANNING FOR PLANETARY ROVER EXPERIMENTS

David Joslin

CSSE Department
Seattle University

Seattle, WA 98122, U.S.A.

Jeremy Frank
Ari K. Jónsson
David E. Smith

Intelligent Systems Division
NASA Ames Research Center

Moffett Field, CA 94035, U.S.A.

ABSTRACT

Time and resource limitations mean that current Mars
rovers (and any future planetary rovers) cannot hope to
achieve every desirable scientific goal. We must therefore
select and plan for a subset of the possible experiments,
maximizing some utility metric. The use of simulation
in planning is appealing because of its potential for
representing complex, realistic details about the rover
and its environment. We demonstrate a planning algo-
rithm that performs high-level planning in a space of
plan strategies, rather than actual plans. In the current
implementation, candidate strategies are evaluated by
a simple simulation, and a genetic algorithm is used to
search for effective strategies. Preliminary results are
encouraging, particularly the potential for modeling un-
certainty about the time required to complete actions,
and the ability to develop strategies that can deal with
this uncertainty gracefully.

1 INTRODUCTION

In this paper we consider the problem of planning activ-
ities for a planetary rover, whose capabilities are based
on the current and future rovers. The purpose of these
rovers is to perform experiments, but high demand and
limited resources make it impossible to perform all re-
quested experiments. In classical Artificial Intelligence
(AI) planning, known as conjunctive-goal planning, we
are given some number of goals and a solution must
satisfy all of those goals in order to be valid (Ghallab,
Nau, and Traverso 2004). Instead we have an oversub-
scribed planning problem, and must select a subset of
the goals (experiments) to achieve and plan the actions
that will achieve those goals (Smith 2004, Joslin and
Smith 2005).

Each experiment is assigned a utility value. The
objective is to perform experiments that achieve the
highest possible total utility. Experiments are subject

to a variety of constraints. Some, such as sky and
atmospheric measurements, can be performed at any
location, while others are associated with a specific rock
or other feature of the landscape and require that the
rover first drive to a certain location. All operations,
including driving, take time and consume energy. En-
ergy is replenished by solar panels, up to the maximum
capacity of the batteries, and cannot be consumed below
a safety margin. Experiments produce data which is
stored on-board the rover until it can be transmitted.
On-board memory is also a limited resource.

Our previous efforts on this domain were based
on Squeaky Wheel Optimization (SWO) (Joslin and
Clements 1998), adapted for oversubscribed planning
(Joslin and Smith 2005). In that work we search the
space of permutations of the possible goals. A permu-
tation is mapped to a solution by a polynomial-time
greedy constructor. If the next goal in the permutation
can be achieved, the necessary steps (possibly driving
to a new location, then performing the experiment)
are added to the plan at the earliest possible time. A
permutation can be thought of as representing a prior-
itization of the goals because the earlier a goal appears
in the permutation the earlier it is considered by the
greedy constructor. If a goal cannot be achieved with-
out violating constraints in the current plan, the goal is
discarded and the constructor moves on to the next goal
in the permutation. The total utility of the resulting
plan is the quality assigned to the permutation from
which the plan was derived. The SWO algorithm uses
“directed mutation” to modify the permutation, and the
algorithm continues in this fashion until a time limit is
reached, returning the best plan found up to that point.

Here we extend that earlierwork in severalways. We
have expanded the size of the problems from planning
one day of rover activities to ten days. We also take
some first steps toward modeling the uncertainty that
is inherent to the rover experiment planning problem
(Bresina et al. 2002). For example, the time required to

Joslin, Frank, Jónsson and Smith

drive from one location to another depends on terrain,
soil consistency and other factors, some of which are not
known at planning time. Longer driving times use more
energy, leaving less energy for subsequent experiments.
A plan that specifies every detail in advance may not
work because of uncertainty about the conditions that
will hold when a step in that plan is to be executed. For
example, the Pathfinder rover spent 40-70% of its time
idle due to failed plans and no on-board system to recover
from plan failure (Bresina et al. 2002). Replanning
by the rover itself may be impractical due to limited
computational power. Some approaches attempt at
planning time to anticipate and address potential issues
that can arise from uncertainty, but such approaches
often fail to handle complex problems.

1.1 Simulation and Planning

One of our goals is to explore options for using simulation
techniques for planning. Simulation techniques offer the
possibility of accurately representing the rover and its
environment, including uncertainty about factors such
as weather, uncertainty due to incomplete information,
uncertainty about the effects of actions, etc. Although
it is possible to generate plans using simplified models,
and then validate or possibly repair those plans using a
more accurate simulation, our objective is to incorporate
simulation from the beginning of the planning process so
that we avoid problems and inefficiencies that can result
from a mismatch between highly simplified models and
the actual environment and controller.

The idea of simulation-based planning is appealing,
but it is also at odds with our earlier approach described
above. The SWO algorithm added actions to the plan
at the earliest possible time, possibly ahead of actions
already in the plan. In other words, as is common to
manyAI planning algorithms, it is possible to decide that
some action will be in the plan but postpone a decision
about exactly when that action will be performed.

We can’t simulate the result of performing an action
at some undetermined future time. On the other hand,
the ability to insert steps at the earliest possible time
was critical to the success of that algorithm. Repeating
the experiments from Joslin and Smith (2005) with a
constructor that only adds steps to the end of the plan
produced extremely poor results. This is not surprising.
Consider a goal with a high utility that is subject to
tight constraints, such as a temporal window on the
time at which the experiment can be performed. When
the constructor has flexibility about the ordering of
plan steps, putting this difficult but high-utility goal
early in the permutation means that the constructor
commits to achieving that goal and ensuring that other
decisions won’t interfere. Other “easier” goals can then

be satisfied by adding steps to the plan before and/or
after the steps that achieve the high-priority goal. Here
the goal permutation is serving to reflect something
about the relative difficulty of achieving the various
goals.

If we restrict the constructor to build a plan in tem-
poral order, then the first goal in the permutation must
be the first goal satisfied in the plan. This is convenient
for simulating the effects of achieving that goal, but
now the permutation cannot represent a prioritization
of goals in the same sense as before, and we lose a crucial
characteristic of the SWO algorithm. A successful strat-
egy for planning activities must leave sufficient flexibility
for the rover’s on-board systems to react to uncertain
outcomes, but simultaneously build good quality plans
that account for uncertainty in execution.

1.2 Overview of New Algorithm

The SWO approach of searching in an abstract space of
goal priorities has been successful in the past, and the use
of simulation seems very promising for the sake of greater
accuracy, particularly for representing uncertainty. Our
objective in designing a new algorithm was to find an
approach similar to SWO but amenable to the use of
simulation.

Under the unrealistic assumption that we can ignore
uncertainty, plan execution is simply the application of
the plan exactly as it was generated. When we model
uncertainty we cannot view plan execution so trivially.
The actual steps performed must depend on the actual
outcome of the execution of previous steps. For example,
whether or not we can perform the next experiment
immediately may depend on how long it took to drive
to the current location. The decision about whether to
drive to a location at all may need to depend on the
probability of being able to arrive at that location in
time to perform high-utility experiments.

We therefore replace the greedy constructor algo-
rithm with a greedy execution algorithm. With SWO
it was important that the constructor be a polynomial-
time algorithm so that a sufficient number of iterations
could be performed to have a good chance of converging
on a solution of good quality. That consideration is
magnified by computational limitations of the rover. It
is important that any computationally-intensive plan-
ning be done remotely, so that the execution algorithm
can be fast.

With SWO a permutation of goals represents some
notion of prioritization relative to a greedy constructor.
The constructor is used to produce a plan, which is then
executed. Due to uncertainty, however, we do not want
a fully detailed plan, and instead rely on the rover’s on-
board system to intelligently act in response to action

Joslin, Frank, Jónsson and Smith

outcomes. We therefore replace the goal permutation
with a “strategy” that is used to guide the execution
algorithm.

Although many implementations of strategies (and
the corresponding execution algorithms) would be pos-
sible, we start with a simple implementation that has
two parts. A strategy has a an “approximate path” that
constrains the path the rover follows while allowing it
some flexibility to behave opportunistically based on
the current world state. A strategy also has a set of
weights that guide decisions about whether to perform
experiments at the current rover location, and which
experiments to perform, or whether to drive to a new
location. The strategy implementation is described in
more detail below.

The role of a strategy is to capture something about
the “big picture” of the problem and problem domain, so
that at execution timewe canmake reasonably intelligent
decisions quickly. The computational investment is in
finding effective strategies. For this we used a simple
genetic algorithm.

We stress that these results are preliminary. The
rover simulation was designed to be sufficiently realistic
to be interesting, but can be substantially improved by
including other important details. The representation
of uncertainty is simplistic. The scope of the test prob-
lems is reasonable, with a planning horizon of ten days
and plans typically achieving between 50 and 100 goals,
but again the level of detail could be expanded. The
implementation of a plan strategy was kept very sim-
ple and straightforward; many options for improving on
this implementation remain to be explored. The search
mechanism likewise was a very simple, generic genetic
algorithm, with opportunities for domain-specific im-
provements deliberately avoided for this initial effort.
Many improvements are possible.

The following section describes the problem in more
detail, and Section 3 explains the current implementa-
tion. Experimental results are described in section 4,
and the final sections discuss related work, and our
conclusions and directions for further research.

2 PROBLEM DESCRIPTION

In our previous work (Joslin and Smith 2005) we de-
fined problems intended to capture key characteristics
of current and anticipated rover planning requirements.
Here we expand the size of those problems by a factor
of ten to make the problems more realistic. The plan-
ning horizon is increased from one day to ten, and the
number of goals, map area, and so on are all increased
proportionately.

Figure 1 shows a map for a typical problem. The
number shown at each location is the total utility for all

experiments that can only be performed at that location.
Circles represent rocks, including a buffer area around
each rock that the rover is required to avoid. Lines
represent allowable paths of travel.

The map is square with an area representing 400
square meters times the number of days in the planning
horizon, i.e., for the problems with a ten-day planning
horizon the map has a total area of 4000 m

2 or roughly 63
meters on a side. Rocks are generated randomly, with
radii (including buffer area) selected from a uniform
distribution between 0.25 meters and 1.25 meters, until
the percentage of the total area covered is approximately
15%. “Target” points are defined on the perimeter of
rocks until there are approximately ten targets for each
day in the planning horizon.

Navigation is restricted to a set of paths between
target points. An allowable path must not intersect
the circle defined for any rock. In addition, if any
three paths form a narrow triangle, the long edge of the
triangle is removed. We require that every target point
be reachable from every other target point, because we
don’t want to generate problems that are effectively
small and easy because only a subset of the targets can
be reached.

Goals are then generated, intended to represent a
typical mix of the types of experiments that scientists
might request. The types of experiments that can be
requested are shown in Table 1. The first column shows
the number of requests of each type that are generated
for a problem instance, scaled by the number of days
in the planning horizon. The second column shows the
utility range. The utility is 5x where x is a random value
selected with a uniform distribution over the indicated
range. With a range of 0 to 4, for example, the actual
utility values will be 1, 5, 25, 125 or 625. In current
practice, experiments are grouped into categories with
each category representing goals that are much more
important than goals in the next lower category. The
assignment of utility values is designed to reflect this
qualitative valuation.

The next column shows the location constraints.
Some goals, such as panoramic imaging, can be achieved
at any location, while others are associated with a partic-
ular rock or geographic feature and must be performed
at a certain location. Where the location is constrained
to be at a target point, a target is selected randomly
from the set of targets defined for the map.

Temporal constraints apply to some goals, as shown
in the next column of the table. A “workday” window of
eight hours is defined for each day, representing the time
during which adequate sunlight is available. All oper-
ations must be performed within a workday window,
but some operations are more tightly constrained than
that. For example, an image of a geographic feature

Joslin, Frank, Jónsson and Smith

Figure 1: Map for Example Problem

may be desired with sunlight from a certain direction.
Eight recurring temporal windows, with durations cho-
sen randomly between 2 and 6 hours, were defined. An
experiment that is constrained to occur within a par-
ticular window can be performed within that window
on any day within the planning horizon.

The duration column shows the range of possible
durations for each type of experiment. A duration is
selected from a uniform distribution over that range.
When we represent uncertainty, the actual value is cho-
sen from a uniform distribution over a range defined by
the duration assigned to the experiment plus or minus
fifty percent. Drive time uncertainty is handled the
same way, as discussed below.

The power column shows the rate at which energy
is consumed during each type of experiment, in Watts.
The energy consumption (in Watt-hours) is therefore
the total duration multiplied by this value. The rover
is constrained not to consume energy below a certain

level. The battery is assumed to have a capacity of
600 Watt-hours, not including a safety margin that the
rover should never plan to exceed. The initial energy is
randomly chosen between 400 and 600 Watt-hours.

Energy is replenished each day by the solar collec-
tors. A more accurate model would have the battery
being recharged during the day, at a rate that varies
with the time of day, and furthermore that rate should
reflect some uncertainty because it depends on the posi-
tioning of the rover relative to the sun and other factors.
We simplify this recharging by treating it as if it occurs
instantaneously overnight, with up to 300 Watt-hours
added, limited by the battery capacity.

The final column shows the data produced by the
experiment. The data must be stored on-board the rover
until it can be transmitted. We assume that up to 50
Mb of data are transmitted each day, and again simplify
the representation by treating this as an instantaneous
replenishment of storage capacity each night. The initial

Joslin, Frank, Jónsson and Smith

Table 1: Goal Parameters

Goal type Goals per
day

Utility Location
constraint

Temporal
window

Duration Power
(Watts)

Data

Camera 10-15 0-4 target random, 2-6
hours

10-30 min 70 1 Mb/min

PanCam 15-20 0-4 any random, 2-6
hours

10-60 min 70 1 Mb/min

MiniTES 10-15 0-4 50% target,
50% any

random, 2-6
hours

5-15 min 60 0.05
Mb/min

Microscopic
Imager

5-10 0-4 target None 5 min 65 0.5 Mb total

Mossbauer 2-3 2-4 target None 5 hours 20 0.2Mb total

available capacity is chosen randomly from a range of
10 to 100 Mb.

In addition to the actions that the rover can perform
for each type of experiment, the rover can drive to an
adjacent location along one of the pre-defined paths.
The duration of a drive (or the mean duration, if we are
representing uncertainty) assumes an average rate of 5
meters per hour. The rover does not drive continuously
because it must periodically stop and verify its location
by using a camera to locate landmarks, and the aver-
age rate here reflects that mode of operation. Driving
consumes 65 Watts of power. As with other operations
it can only be performed during the workday window.

The current implementation does not allow for par-
allel actions. In the current Mars rovers, as well as in
(Joslin and Smith 2005), a limited degree of parallel
operation is possible. No experiments can be performed
while driving.

3 IMPLEMENTATION

This section describes the current implementation. First
we describe the implementation of strategies and the
corresponding execution algorithm. We then discuss the
implementation of the simulation that is used to evaluate
a strategy. The last part of this section describes the
genetic algorithm that is used to search for effective
strategies.

3.1 Strategy and Execution

A strategy should represent high-level considerations of
the problem and domain so that the execution algorithm
can make reasonably intelligent decisions quickly. For
the current implementation we represent a strategy in
two parts: an “approximate path” and a set of weights
that determine how the execution algorithm decides
what action to perform next.

The approximate path is a sequence of map loca-
tions. The locations do not need to be adjacent in the
graph representing the locations and allowed paths of
travel. The execution algorithm is constrained to visit
each of the locations in that sequence in order. Between
those points, the algorithm is free to choose any edge in
the graph that takes the rover closer to the next required
location. Thus the sequence of locations exerts some
control over the path of the rover while leaving some
degree of flexibility for the execution algorithm. Where
the locations are more closely spaced the strategy re-
duces the options available to the execution algorithm,
and where they are more widely separated the strategy
allows greater flexibility.

When the execution algorithm is invoked it decides
what to do next. It can decide to begin performing
an experiment at the current location, if all of the pre-
conditions for performing that experiment are satisfied.
It can decide to sit idle, which it might need to do,
for example, to wait for the start of a temporal win-
dow required by an experiment. Or it can drive to
another location. In order to drive, the preconditions
must be met, i.e., sufficient energy and time must be
available to complete the drive within the current work-
day window. Furthermore, the selected location must
be adjacent in the graph of allowable paths, and the
location must either be the next location in the strategy
location sequence, or it must be closer (as measured by
shortest-path distance) to that next location.

The strategy includes a set of weights that influence
the way the execution algorithm makes these decisions.
In this initial implementation we have tried to keep the
strategy as simple as possible. There are three weights
representedby non-negative floating-point numbers: the
idle weight, the local weight, and the threshold.

We identify the goals that could be performed at the
rover’s current location, including goals that can only
be performed at that location and goals that could be
performed at any location. For each goal we determine

Joslin, Frank, Jónsson and Smith

how long the rover would have to be idle before it could
begin the experiment. It might be necessary for the
rover to remain idle in order to wait for sufficient energy
or data storage capacity to become available, or to wait
for a temporal window, or some combination of these.

We score each of the goals as follows. The required
idle time is multiplied by the idle weight, and then
the duration for the goal is added. (For all of these
calculations the “pessimistic” values for duration are
used; see the discussion of the simulation implementation
below.) The result is the adjusted duration. Larger idle
weights provide a higher incentive to avoid sitting idle.
In an environment where high-utility goals are plentiful,
we would expect to see a large penalty for idle time. On
the other hand, an environment in which high-utility
goals are sparse might be better served by a low penalty
for idle time, allowing the rover to wait at the current
location in order to perform an experiment rather than
moving on in the expectation of finding amore immediate
opportunity later.

The goal utility is divided by the adjusted duration,
giving the adjusted utility. This represents the rate at
which utility is accumulated, taking any penalty for
idle time into account. If the goal must be performed
at the current location then the adjusted utility is the
score for the goal. If the goal could be performed at any
location, then the score is the adjusted utility multiplied
by the local weight. Goals that can be performed at any
location are more likely to be available later, after the
rover has moved to another location. The local weight
allows the strategy to give some degree of preference to
goals that can only be performed at the current location.

Once all of the available goals have been scored, the
execution algorithm ignores any goals with a score lower
than the threshold. If any goals remain, the highest-
scoring goal is selected for execution. If the experiment
for that goal cannot begin execution immediately, the
rover will remain idle until it can be executed. (Obvi-
ously there are a variety of simple optimizations that
could be performed here, such as looking for lower-utility
goals that can fill the idle time.)

If no goals have scores above the threshold, then
the execution algorithm selects a destination to which
the rover will drive. For each of the neighboring lo-
cations that are closer (according to the shortest-path
distance) to the next required location in the strategy’s
approximate path, we sum the utility values for any
unachieved goals that are constrained to be performed
at that location. The next destination for the rover is
the location with the highest total utility. This is a very
limited view of the value associated with each possible
location, but we rely on the strategy’s approximate path
to reflect higher-level considerations.

Currently these three weights control the rover’s
actions throughout plan execution, but finer-grained
control would be possible. For example, we might have
weights associated with each segment of the approxi-
mate path, so that the strategy could adapt to different
properties in different areas of the map.

3.2 Simulation

When the execution algorithm has selected an action
to perform (driving, or performing an experiment), the
simulation selects a value for the duration of that ac-
tion according to the associated probability distribu-
tion. Currently we use a uniform probability distribu-
tion for all simulated values. The duration thus selected
is then used to calculate the energy consumption and
the amount of data produced. Multiple simulation trials
are used to estimate the expected utility for a strategy.

It would obviously be unfair to let the execution
algorithm know what the simulated duration will be
before a decision is made about what action to perform.
When the execution algorithm is deciding what to do, it
uses “worst case” values. The motivation for this is that
operations are assumed to be non-interruptible, meaning
that they cannot be suspended overnight, for example.
This means that the execution algorithm cannot begin
execution of an operation unless it can be completed
during the current workday window under these “worst
case” assumptions. Temporal constraints on operations
are treated similarly, as are energy and data storage
requirements. We do not consider the preconditions for
an operation to be met unless they are met under these
“worst case” assumptions.

By “worst case” we mean the worst case within
operational parameters. We are not considering catas-
trophic failures of the rover, or unanticipated conditions
that lead to operations failing or unusually long delays.
Any operation that takes longer than the maximum
specified for a given operation is viewed as a failure that
requires review by ground control.

The current implementation was written in Python.
A single simulation with a ten-day planning horizon
takes almost one second of CPU time, with a typical
plan satisfying 50-100 goals. The algorithm scales well
because simulating the execution of a strategy is linear
in the number of steps in the plan.

3.3 Search

We search the space of strategies using a simple genetic
algorithm, and evaluate a strategy by simulating its
execution. The initial pool consists of random weights
selected from reasonable ranges, and location sequences
generated by a simple greedy heuristic. For crossover

Joslin, Frank, Jónsson and Smith

operations, two members are selected with a preference
for higher fitness, and the child is created by pairwise-
averaging the weights, and by selecting a crossover point
in the location sequence and taking the sequence to the
left of the crossover point from one parent, and to the
right of the crossover point from the other. For random
mutation, the weights are adjusted by a small random
value, and each sequence location has a 10% probability
of being replaced with a nearby location.

4 EXPERIMENTAL RESULTS

We generated twenty problems, with randomly-
generated maps, goals, initial state, etc. Performance
across all twenty problems was comparable, so the fol-
lowing results focus on the first problem in the set.

The first experiments used no uncertainty in the
simulation. The duration for each operation is fixed at
a typical value. Figure 2 shows the evolution of the
strategy path after 50, 500 and 5000 generations of the
genetic algorithm. The path becomes more streamlined,
but at the same time the strategy parameters that control
execution are being refined. The best strategy includes
both the streamlined path and reduced parameters for
the idle penalty and the threshold; as a result the rover
tends to spend more time at each location, rather than
moving on in order to (hopefully) achieve other higher-
utility experiments.

For a simple test of simulation with uncertainty we
defined the range of possible values to be a typical value
plus or minus 50%, with values selected from a uniform
distribution. In practice the probability distribution
will not be so simple. For example, wheel slippage on
the current Mars rovers, as a function of the slope of
the terrain, is non-linear (JPL 2004), and other factors
such as soil type will also have an effect on the time
required to drive between two points. The use of uniform
distributions is purely an implementation shortcut. Our
approach could easily make use of complex distributions,
and if desired, those distributions could apply different
models for different regions of the map.

When the execution of an action is simulated, a
value is selected randomly from the appropriate range.
A strategy is evaluated by simulating its execution some
number of times and and using the mean of the resulting
scores. Figure 3 shows a histogram for the utility result-
ing from 100 simulations for the strategy that resulted
in the best mean utility under uncertainty, after 200
generations of the genetic algorithm.

Figure 4 shows the evolution of strategy quality over
time when the fitness function takes the mean value over
25 simulation trials. The dashed line shows the mean,
and the error bars show the range of utility values for

Figure 2: Plan Strategy Path Evolution (50, 500 and
5000 Generations)

Joslin, Frank, Jónsson and Smith

 0

 5

 10

 15

 20

 24000 25000 26000 27000 28000 29000

P
er

ce
nt

 (
10

0
sa

m
pl

es
)

Utility histogram (500 point range per bar)

Figure 3: Utility Histogram over 100 Simulation Trials;
Mean = 26432

the 25 trials. For this experiment the algorithm was
allowed to run for 5000 generations.

Note that the last improvement to the mean utility
(generation 3087) also expanded the range between the
minimum and maximum. This may be undesirable,
but if so we can calculate the fitness value using some
metric other than the estimated mean utility. We ran
several experiments with different fitness calculations,
with 5000 generations and 25 simulations per strategy.
Simply minimizing the difference between the maximum
and minimum utility turned out to be a bad idea. The
algorithm quickly converged on a strategy that set the
threshold very high, so that only a few very high-utility
goals were ever attempted, and all could be achieved
even under worst-case conditions. This reduced the
uncertainty in the outcome to zero, but this is probably
not a desirable mode of operation. Other experiments
were done with the fitness calculated as the minimum
and maximum utility over the set of simulations. These
resulted in strategies that differed most noticeably in the
value of the weights. With the minimum utility used
as the fitness metric, the best strategy also diverged
significantly from the path adopted by both of the other
evaluation modes.

5 RELATED WORK

The current algorithm is based in part on ideas from
SWO (Joslin and Clements 1998, Joslin and Smith 2005).
In addition to the initial work on factory scheduling and
graph coloring (Joslin and Clements 1998), SWO has
been successfully applied to satellite downlink schedul-
ing (Barbulescu, Whitley, and Howe 2004), satellite
observation scheduling (Globus et al. 2004), project
scheduling (Smith and Pyle 2004), and scheduling of

 20000

 21000

 22000

 23000

 24000

 25000

 26000

 27000

 28000

 29000

 30000

 31000

 0 500 1000 1500 2000 2500 3000 3500

M
ea

n
ut

ili
ty

, w
ith

 m
ax

 a
nd

 m
in

Iteration

Figure 4: Evolution of Mean Utility

airborne astronomical observations (Frank and Kürklü
2005), and other applications as well.

We can view the goal permutation in SWO as a
form of strategy, although not one that is suitable for
controlling an execution algorithm. Here we implement
a strategy thatmight be consideredmore abstract, under
which goal priorities are determined dynamically during
execution, or during simulation of execution when we
are searching for an effective strategy.

We deviate from the SWO approach of having a
single goal permutation that is iteratively modified, and
instead use a genetic algorithm to search for effective
strategies. In this respect the approach we are taking is
closer to that of Syswerda (1994). SWO can be viewed
as a special case of this in which the population size is
one, no crossover is used, and a collection of “directed
mutations” are all applied at every iteration.

The new algorithm incorporates simulation in a
fashion that allows us to represent and reason about
uncertainty in the domain. The challenges of oversub-
scribed planning problems under uncertainty are out-
lined in (Bresina et al. 2002). As they discuss, many
current approaches to planning under uncertainty do not
apply to a domain such as the rover planning domain
because, among other things, they assume that actions
are instantaneous, and they do not allow for temporal
constraints on actions.

Most of the approaches they discuss rely on building
a plan with contingent branching. Some algorithms try
to identify just the most important branch conditions.
For example, in Gough, Fox, and Long (2004) condi-
tional plans are developed that handle uncertainty about
resource consumption by providing branches that can
be taken if sufficient resources are available to make suc-
cessful completion sufficiently probable. An algorithm
for finding optimal contingent plans limited to k condi-

Joslin, Frank, Jónsson and Smith

tional branches is demonstrated in (Meuleau and Smith
2003). As the authors point out, bandwidth limitations
and other considerations provide strong incentives for
keeping plans small. In our approach the information
transmitted to the rover would not be a plan per se, but
rather a strategy that guides the selection of goals and
actions by an execution algorithm in the rover.

Simulation is well-suited to validation of plans. The
MAPGEN system (Bresina et al. 2005), currently used
to assist in activity planning for the current Mars rovers,
includes simulators among its components. Specifi-
cally, EUROPA (Frank and Jónsson 2003) builds a plan,
which is then evaluated in part by simulations of both
power consumption (MMPAT) and the flight hardware
sequence generator and checker (SEQGEN).

As noted earlier, our approach is an attempt to
avoid problems that can arise from a mismatch between
a simple planning model and a more realistic model used
for validation by simulation, by instead using simulation
during plan generation.

Simulation has also been used in Materials Require-
ments Planning (MRP) and Advanced Planning and
Scheduling (APS) (Musselman, O’Reilly, and Duket
2002). Here the term “planning” is not used in ex-
actly the same sense as in the field of AI, but there is
substantial overlap. Orders and forecasts correspond to
goals, and the problem may be oversubscribed in the
sense that orders may have to be declined if manufactur-
ing capacity is insufficient. Uncertainty exists in forecast
quantities, delivery times, etc. Their system uses sim-
ulation to generate feasible schedules once orders have
been assigned to workcenters and have been assigned
start times. The scheduler uses a detailed simulation
to assign low-level resources, to determine setup times
(which may depend on how a machine was configured for
the previous task), and so on. If some orders turn out to
be infeasible to schedule the user may simulate various
options such as hiring additional help or outsourcing,
to try to find a better plan.

6 CONCLUSIONS

The key advantage of our approach to oversubscribed
planning is the potential use of simulation during plan
generation. Although the current implementation uses a
very simple simulation, we anticipate being able to evalu-
ate strategies and execution algorithms with much more
sophisticated simulations. Simulations might, for ex-
ample, consider weather predictions (temperature, wind
levels, dust levels), incomplete knowledge about soil and
terrain, and so on. Such factors can affect solar panel
efficiency, drive times, available bandwidth, and other
aspects of rover activity. For the sake of accuracy we
may need to simulate dependencies between variables.

If drive time is increased because poor visibility makes
navigation more difficult, then solar panel efficiency is
probably also degraded, and panoramic photography
may be temporarily infeasible.

The key issue in applying this approach is whether
or not a suitable strategy and execution algorithm can
be devised. This is analogous to designing a suitable
prioritization and constructor (and where applicable,
the “directed mutations” that modify the prioritization)
in Squeaky-Wheel Optimization. In the case of SWO,
suitable implementations have been devised and found
to be very effective in a wide variety of domains. For
any new domain, however, there is no guarantee that
a suitable implementation will be possible, for either
algorithm.

Every element of our initial implementation could be
improved. Additional parameters could allow for bet-
ter fine-tuning of opportunistic behavior. The initial
heuristic path generation could be much more sophis-
ticated. A small amount of search for a good ordering
of experiments that can be performed at the current
location could easily reduce idle times. And numerous
other enhancements would be possible as well.

Rather than tweaking this implementation, how-
ever, our near-term goal is to try to develop a better
understanding of, and perhaps a generalization of, this
approach of searching the space of plan strategies. As
part of this, we hope to consider a wider range of strat-
egy implementations. One intriguing idea is to use a
sequence of goals with deadlines that define “critical
commitments.” The execution algorithm would be con-
strained to consider other goals only when successful
completion of the critical commitments remains feasible
under pessimistic assumptions where uncertainty is in-
volved. Depending on actual outcomes during execution
there may be more time, or less time, for opportunistic
pursuit of secondary goals. Just as the approximate
path in our current strategy serves to guide the rover in
a certain direction, the requirement that a specific goal
be achieved by a deadline will induce a preference for the
rover moving in the direction of the required location
for that goal (if any), and will impose constraints on
resource consumption.

One appealing aspect of this alternate design for
a strategy is that it provides a simple way for human
experts to influence the plan, by setting critical com-
mitments that the planner is required to include. The
humanplanners could give the planning software asmuch
or as little flexibility as desired. Another potentially ap-
pealing aspect of this design is that it is a conservative
approach, in that the critical commitment goals set a
lower bound on the utility, since all other decisions are
made with those commitments having priority.

Joslin, Frank, Jónsson and Smith

ACKNOWLEDGMENTS

The authors thank James Crawford for discussions of
this work. This research was supported by NASA Ames
Research Center, with funding from the NASA Intelli-
gent Systems Program.

REFERENCES

Barbulescu, L., D. Whitley, and A. Howe. 2004. Leap
before you look: An effective strategy in an over-
subscribed scheduling problem. In Proc. of the 19th
National Conference on Artificial Intelligence.

Bresina, J., R. Dearden, N. Meuleau, S. Ramakrishnan,
D. Smith, and R. Washington. 2002. Planning un-
der continuous time and resource uncertainty: A
challenge for AI. In Proc. of the 18th Conference on
Uncertainty in Artificial Intelligence (UAI-02).

Bresina, J., A. Jónsson, P. Morris, and K. Rajan. 2005.
Mixed-initiative planning in MAPGEN: Capabili-
ties and shortcomings. In Proc. of the ICAPS Work-
shop on Mixed-Initiative Planning and Scheduling.

Frank, J., and A. Jónsson. 2003. Constraint-based at-
tribute and interval planning. Journal of Constraints
Special Issue on Constraints and Planning 8 (4):
339–364.

Frank, J., and E. Kürklü. 2005. Mixed discrete and
continuous algorithms for scheduling airborne as-
tronomy observations. In Proc. of the 2nd Intl. Con-
ference on Constraint Programming, Artificial In-
telligence and Operations Research.

Ghallab, M., D. Nau, and P. Traverso. 2004. Automated
planning: Theory and practice. Morgan Kaufmann.

Globus, A., J. Crawford, J. Lohn, and A. Pryor. 2004.
A comparison of techniques for scheduling earth ob-
serving satellites. In Proc. of the 16th Conference on
the Innovative Applications of Artificial Intelligence.

Gough, J., M. Fox, and D. Long. 2004. Plan execution
under resource consumption uncertainty. In Proc.
of the Workshop on Connecting Planning Theory
with Practice at 13th Intl. Conference on Automated
Planning and Scheduling (ICAPS’04), 24–29.

Joslin, D., and D. E. Smith. 2005. Squeaky-Wheel Op-
timization for planetary rover experiment planning.
In Proc. of the Intelligent Systems and Agents 2005
Conference (ISA2005).

Joslin, D. E., and D. P. Clements. 1998. Squeaky Wheel
Optimization. In Proc. of the 15th National Confer-
ence on Artificial Intelligence (AAAI-98), Madison,
WI, 340–346.

JPL 2004. Slip sliding away. http://marsrovers.

jpl.nasa.gov/spotlight/opportunity/b20_

20040309.html.

Meuleau, N., and D. Smith. 2003. Optimal limited con-
tingency planning. In Proc. of the 19th Conf. on
Uncertainty in Artificial Intelligence (UAI-03).

Musselman, K., J. O’Reilly, and S. Duket. 2002. The role
of simulation in advanced planning and scheduling.
In Proc. of the 2002 Winter Simulation Confer-
ence, ed. E. Yücesan, C. Chen, J. Snowdon, and
J. Charnes, 1825–1830.

Smith, D. 2004.Choosing objectives in over-subscription
planning. In Proc. of the 14th Intl. Conf. on Auto-
mated Planning and Scheduling.

Smith, T., and J. Pyle. 2004. An effective algorithm
for project scheduling with arbitrary temporal con-
straints. In Proc. of the 19th National Conference
on Artificial Intelligence.

Syswerda, G. 1994. Generation of schedules using a
genetic procedure. U.S. Patent number 5,319,781.

AUTHOR BIOGRAPHIES

DAVID JOSLIN is an assistant professor in the Com-
puter Science and Software Engineering department at
Seattle University. He received his PhD from the Univer-
sity of Pittsburgh in 1996. His research interests include
AI planning and scheduling, and game AI algorithms.
His e-mail address is <joslind@seattleu.edu>.

JEREMYFRANK is a researcher in the Autonomous
Systems and Robotics area at NASA Ames Research
Center. He received his PhD. in Computer Science from
the University of California, Davis, in 1997. His research
interests are in automated planning and scheduling, with
an emphasis on methods from AI, operations research
and computer science. His e-mail address is <frank@

email.arc.nasa.gov>.

ARI K. JÓNSSON is a senior research scientist with
the Research Institute for Advanced Computer Science
at NASA Ames Research Center. He received his Ph.D.
in computer science from Stanford University in 1997,
and has since worked on research and applications in the
areas of constraint reasoning and automated planning
and scheduling. He was the development lead for the
MAPGEN mixed-initiative planning system, which is
used to build daily activity plans for the MER rovers.
His e-mail address is <ajonsson@arc.nasa.gov>.

DAVIDE.SMITH is lead of thePlanning andSchedul-
ing Group at NASA Ames Research Center, serves on
the Advisory Board for the Journal of Artificial Intelli-
gence Research, and is Editor for special issues on the
3rd and 4th International Planning Competitions. Dr.
Smith is a Fellow of the AAAI. His e-mail address is
<desmith@arc.nasa.gov>.

